STRESS WAVES IN A VISCOELASTIC MEDIUM WITH A SINGULAR
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We consider stress waves in a viscoelastic medium with a singular hereditary kernel. It is shown
that in such a medium, in contrast to the models of Maxwell and of a standard linear body, there is a prop-
agation of waves on which the stresses vary continuously during the transition through the wave front.

Problems on the propagation of stress waves in semiinfinite viscoelastic bars were considered in
{1-5], in which, using Laplace and Fourier integral transformations, solutions were obtained for the models
of Maxwell [4]. Voigt, and a standard linear body [5]. However, use of integral transformations causes
definite computational difficulties, connected with the transition from the transform to the inverse trans-
form; to eliminate these difficulties, approximate methods are frequently used: asymptotic formulas [6],
expansions near the wave front (3], and also various approximations (7, 8].

Below we investigate stress waves in a viscoelastic bar, the hereditary properties of which are des-
cribed by Boltzmann—Volterra relations with a singular hereditary kernel [9].

The stress o(x, t) in a viscoelastic semiinfinite bar with load ¢ (0, t) given at the end has the form
(10]
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where J; and J, are. respectively. the nonrelaxation and relaxation values of the compliance, K{p) is the
Laplace transform of the aftereffect kernel, and p is the density of the medium.

We assume that the boundary stress o{0, t} is given by the Heaviside unit function H(t):
G (U, ) = gl (1), T (0, p) = Gop! ()

The problem of the propagation of a pulsed load in such 2 medium was considered in [11].

Substituting (3) into (1), we obtain
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We consider as the aftereffect kernel the fractional-exponent function of Rabotnov [9]
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Here S (e is the frequency of retardation (relaxation), and vy is the divisibility parameter (0 <y =1).
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Substituting (5) into (4), taking account of (2), we obtain
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The integrand in Eq. (6) for v= 1 has a first-order pole at the point p=0 and branch points p=0 and
p=<<. The points p , =(=1)/vsg , o arenot singularities, since they fall on the second sheet of a Riemann
surface. The converse theorem is applicable to multivalued functions only for the first sheet of a Riemann
surface (largp|<#), and therefore the integration in Eq. (6) should be carried out over the contour shown in
Fig. 1, for R—e«, r— 0. Taking into account that the integral (6) is nonzero for the condition

Relpt — & {p) ze ) = — o0, | p| — oo, Yyn < | arg p | < (7

(the condition of passage of the wave through the point x), the expression for o(x, t) is written in the form
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Note that for vy =1 (the model of a standard linear body) the expression for the stress was investigated
in [5].

In addition to the exact solution (8) there is interest in the expansion of oix, t) near the wave front in
a series in powers of (t — t))”. This series is obtained based on the "direct" method discussed in {7, 8]
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The principal difference between expressious (7) and (8) consists in the fact that for fractional v the
stress is continuous near the wave front, unlike the model of a standard linear body, in which the stresses
undergo a discontinuity.

Figure 2 gives results of the calculation of the stress o(x, t) using the integral (8) (solid lines) and
expressions (9) and (10) (dashed lines) with t,= 2 for sc/sgz 1.5. The values of the parameter y are in-
dicated by the numbers on the curves.
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The calculations were made using a Mir-1 computer.

For fractional vy a wave propagates in the bar, the value of the stress being zero on the front and
varying continuously in the transition through the wave front.
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